Journal of Organometallic Chemistry, 217 (1981) C14-C16 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

REACTIONS OF $M_2Cl_4(PR_3)_4$ (M = Mo AND W) WITH CARBON MONOXIDE

F. ALBERT COTTON^{*}, DONALD J. DARENSBOURG^{*} and BRIAN W.S. KOLTHAMMER Department of Chemistry, Texas A&M University, College Station, Texas 77843 (U.S.A.) (Received May 28th, 1981)

Summary

The reactions of $M_2Cl_4(PR_3)_4$ derivatives (M = Mo, W and PR₃ = PEt₃, PBu₃ⁿ) with CO at atmospheric pressure in toluene at 70°C to afford $M(CO)_3(PR_3)_2Cl_2$ and trans- $M(CO)_4(PR_3)_2$ are reported.

Although simple adduct formation and ligand substitution processes involving quadruply bonded metal—metal dimers with donor ligands such as phosphines have been described [1-4], little is known regarding reactivity patterns in these species with good π -acceptor ligands. The reactions of Mo₂(O₂CCH₃)₄ and K₄Mo₂Cl₈ with alkyl isocyanides were found to cleave the Mo-Mo quadruple bond to provide [Mo(CNR)₇]²⁺ ions [5], and Mo₂Me₄(PR₃)₄ compounds have been shown to react with CO to give acetone and mononuclear, zero-valent molybdenum species Mo(CO)_{6-x}(PR₃)_x where x = 0-3 [4]. We have begun a systematic investigation of the reactivity of quadruply bonded metal-metal derivatives with carbon monoxide, and we report here some of our initial observations [6].

A Schlenk flask containing a toluene solution of $Mo_2Cl_4(PEt_3)_4$ was charged with an atmosphere of carbon monoxide. Upon heating to 70°C the reaction solution gradually (over ca. 1 h) changed in appearance from the deep blue color of the starting reagent to a red-orange color. The reaction was monitored in the $\nu(CO)$ region by means of infrared spectroscopy and it showed a constant band profile, both with respect to number and relative intensities (see Fig. 1), over the duration of the reaction. The three bands at 2019, 1947, and 1906 cm⁻¹ can be shown to belong to $Mo(CO)_3(PEt_3)_2Cl_2$, while the peak at 1881 cm⁻¹ is attributable to the *trans*- $Mo(CO)_4(PEt_3)_2$ derivative. These $\nu(CO)$ band assignments were confirmed by spectral comparisons with authentic samples obtained from independent syntheses employing established techniques [7,8]. The stereochemistry of the seven-coordinate monomer,

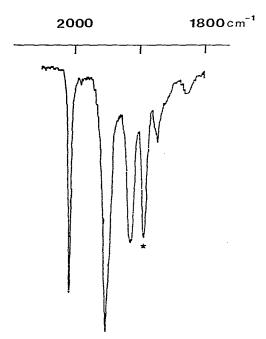


Fig. 1. Infrared spectrum in $\nu(CO)$ region in toluene of CO-containing products from the reaction of $Mo_2Cl_4(PEt_3)_4$ with CO at 70°C. Peak marked with asterisk is due to trans- $Mo(CO)_4(PEt_3)_2$.

Mo(CO)₃(PEt₃)₂Cl₂, obtained from the reaction of Mo(CO)₄Cl₂ and PEt₃ [9], has been determined by a single crystal X-ray diffraction study [9]. The complex exists as a capped octahedron with a CO ligand occupying the capping position, two CO groups and one phosphine ligand in the capped face, and two phosphorus donor ligands mutually *trans*. Crystals of the complex prepared by us were shown to be isomorphous with the earlier ones. The orthorhombic unit cell parameters we determined were a = 27.981(4), b = 12.378(6), c =12.952(6)Å, and V = 4486(1)Å³.

The stereochemical positions of the PEt₃ ligands in the zero-valent molybdenum complex were also confirmed by single crystal X-ray analysis. This *trans*-Mo(CO)₄ (PEt₃)₂ species comprised only ca. 15% of the CO-containing products, and was the kinetically-controlled isomer. While it is true that the *trans* isomer is also the thermodynamically more stable one, isomerization of an initially produced *cis* form would not have been rapid enough under the reaction conditions to account for the isomeric distribution noted [8]. Presumably, reduction of the metal atom by carbon monoxide is accompanied by COCl₂ production. Both Mo(CO)₃ (PEt₃)₂ Cl₂ and *trans*-Mo(CO)₄ (PEt₃)₂ are believed to be primary products of the reaction of carbon monoxide with Mo₂Cl₄ (PEt₃)₄. Subsequent reaction processes, such as Mo(CO)₃ (PEt₃)₂Cl₂ with CO to afford Mo(CO)₄ (PEt₃)₂, were ruled out by the proper control experiments. Additionally, it is known that further reactions of Mo(CO)₄ (PR₃)₂ species with CO can lead to Mo(CO)₅ PR₃ and eventually Mo(CO)₆ [10].

The reactions of $W_2 Cl_4 (PEt_3)_4$ and $M_2 Cl_4 (PBu_3^n)_4$ (M = Mo, W) with CO yielded results virtually identical with those just described for $Mo_2 Cl_4 (PEt_3)_4$,

except that, as anticipated, dimer disruption in the W-W quadruply-bonded species occurred with greater facility than in their molybdenum analogues. A strong phosphine ligand dependence in the reactions of $M_2Cl_4(PR_3)_4$ derivatives with carbon monoxide under the mild reaction conditions employed was observed, e.g., $Mo_2Cl_4(PMe_3)_4$ and $Mo_2Cl_4(diphos)_2$ were unreactive. Studies of the reactivity of these derivatives with CO under more forcing conditions are underway. The infrared spectral data presented for an otherwise uncharacterized reaction of $Mo_2Cl_4(PEt_3)_4$ with CO at 52 atm in toluene at ambient temperature indicate the occurrence of processes that are consistent with the observations described herein [11].

Acknowledgements

We thank the National Science Foundation for support. D.J.D. thanks Tulane University for a sabbatical leave during the Spring semester, 1980. B.W.S.K. is the recipient of a NATO Postdoctoral Fellowship administered by the Natural Sciences and Engineering Research Council of Canada.

References

- P.R. Sharp and R.R. Schrock, J. Amer. Chem. Soc., 102 (1980) 1430. 1
- 2 G.S. Girolami, V.V. Mainz, and R.A. Andersen, Inorg. Chem., 19 (1980) 805.
- 3 F.A. Cotton and D.G. Lay, Inorg. Chem., 20 (1981) 935.
- 4 G.S. Girolami, V.V. Mainz, R.A. Andersen, S.H. Vollmer and V.W. Day, J. Amer. Chem. Soc., 103 (1981) in press.
- 5 P. Brant, F.A. Cotton, J.C. Sekutowski, T.E. Wood, and R.A. Walton, J. Amer. Chem. Soc., 101 (1979) 6588.
- F.A. Cotton, D.J. Darensbourg, and B.W.S. Kolthammer, Southwest-Southeast ACS Regional Meeting, 6 New Orleans, La., 10-13 Dec., 1980, INOR #235.
- 7 A.D. Westland and N. Muriithi, Inorg. Chem., 12 (1973) 2356.
- 8 D.J. Darensbourg, Inorg. Chem., 18 (1979) 14.
- 9 M.G.B. Drew and J.D. Wilkins, J. Chem. Soc., Dalton Trans., (1977) 194.
- D.J. Darensbourg and A.H. Graves, Inorg. Chem., 18 (1979) 1257.
 V.M. Hall, C.D. Schmulbach, and W.N. Soby, J. Organometal. Chem., 209 (1981) 69.